网站首页 男性健康 女性健康 育儿保健 老年健康 健康自测 查药品 查疾病 健康资讯


  • 首页 > 
  • 健康资讯 > 
  • 学术前沿 > 
  • 《自然》子刊:癌细胞形态变化与入侵方式的新发现

    发布时间:2021年11月01日 09:09:25 来源:振东健康网


    资讯作者:Weill Cornell Medical College


    本文献于2021年10月27日发表在国际期刊《Scientific Reports》上。俄勒冈州立大学的研究人员们揭示了恶性细胞改变其形状以及入侵不同类型组织的迁移方式,有助于了解和预防癌症转移。



    领导这项研究的俄亥俄州立大学生物物理学家Bo Sun说:“经过数十亿年的进化,细胞已经学会了许多不同的迁移方式。在正常发育和维持健康的生理过程中(如伤口愈合),需要时细胞就会执行特定的迁移程序。然而,在肿瘤的情况下,癌细胞利用这些迁移程序来维持它们对组织的入侵?!?/span>













    Research Shows Cancer Cells Change Shape and How They Move to Invade Different Types of Tissue

    Oregon State University research has shed new light on the way malignant cells change their shape and migration techniques to invade different types of tissue.

    The findings, published in Scientific Reports, are a key step toward understanding and preventing cancer metastasis, the internal spreading of the disease that's responsible for 95% of all cancer deaths.

    "Through billions of years of evolution, cells have learned a number of distinct ways to migrate," said OSU biophysicist Bo Sun, who led the study. "In normal development and health-maintaining physiological processes such as wound healing, specific migration programs are executed when required. In the case of a tumor, however, those migration programs are leveraged by cancer cells to sustain their invasion into tissue."

    How well a cancer cell can change shape and shift travel modes plays a huge role in a cancer patient's prognosis, Sun explains.

    "Many cancer therapies that target a particular way a cell moves can fail to stop tumor metastasis in large part because cells switch to another available migration program," he said.

    Sun and collaborators in the OSU colleges of Science and Engineering used a type of artificial intelligence known as computer vision to track a cell's migration program based on its shape; computer vision derives information from digital photos, video and other visual inputs.

    For this study, the scientists looked at cells from MDA-MB-23, a line of highly invasive breast cancer cells that's commonly used in medical research. Sun likens the cell shape analysis to determining whether a swimmer is doing the backstroke, breaststroke or butterfly based on the position swimmers put their body in and the movements they execute.

    "Cell shape is determined by cell function, and loss of characteristic shape is associated with functional abnormality," Sun said. "That's why shape characterization has been an important tool for diagnosis in cancer as well as in other conditions such as red blood cell disease or neurological disorders." The findings show that cancer cells change their migration modes far more often than had been previously thought, he says.

    "While the constant switching we saw in the breast cancer cells we studied doesn't necessarily maximize their speed in a particular type of tissue, it allows for the cells to invade heterogeneous tissue environments," Sun said.

    During metastasis, a migrating cancer cell has to make its way through extracellular matrix that has distinct and varying mechanical properties, the researchers note. The extracellular matrix, or ECM, is the non-cellular part of tissues and organs. It acts as a scaffold and, thanks to its variety of biologically active molecules, performs a range of important biochemical and biomechanical jobs.

    The machine learning and visualization techniques the scientists employed showed that a cell's shape changes are regulated by the molecular control hub, Rho/ROCK-signaling, that a cell uses to sense its physical environment and generate the force required for motion.

    Using a model representing two mechanically distinct layers of extracellular matrix, the scientists showed the cells gradually changed their shape and movement program as they approached and crossed the interface of the layers. That suggests these transitions are essential for cancer cell metastasis, which requires the navigation of non-uniform ECM.

    "The way a cell's form changes—its morphodynamics—is a crucial factor in determining its invasive potential and to our knowledge this has largely gone unstudied," Sun said. "The morphodynamics of migrating cancer cells are shaping up to be a powerful tool for inspecting the internal state and microenvironment of the cells. Future research is needed to decode the morphodynamics into a rich and understandable body language of cells, and to affect morphodynamics as a means of controlling what the cells are doing."


    Christopher Z. Eddy et al, Morphodynamicsfacilitate cancer cells to navigate 3D extracellular matrix, Scientific Reports(2021).


    新宝5 彩神 welcome登录 彩神8网址在线登录 大发国际 彩神IV购彩大厅